Molecular basis of ALS and FTD: implications for translational studies.
نویسنده
چکیده
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative disorders, related by signs of deteriorating motor and cognitive functions, and short survival. The cause is unknown and no effective treatment currently exists. For ALS, there is only a drug Riluzole and a promising substance arimoclomol. The overlap between ALS and FTD occurs at clinical, genetic, and pathological levels. The majority of ALS cases are sporadic (SALS) and a subset of patients has an inherited form of the disease, familial ALS (FALS), with a common SOD1 mutation, also present in SALS. A few of the mutant genes identified in FALS have also been found in SALS. Recently, hexanucleotide repeat expansions in C9ORF72 gene were found to comprise the largest fraction of ALS- and FTD-causing mutations known to date. TAR DNA-binding protein 43 (TDP-43), encoded by the TARDBP gene, has been identified as the pathological protein of FALS, SALS and, less frequently, FTD. The less frequent TDP-43 pathology in other forms of familial FTD has been linked to a range of mutations in GRN, FUS/TLS, rarely VCP, and other genes. TDP-43 and FUS/TLS have striking structural and functional similarities, most likely implicating altered RNA processing as a major event in ALS pathogenesis. The clinical overlap of the symptoms of FTD and ALS is complemented by overlapping neuropathology, with intracellular inclusions composed of microtubule-associated protein tau, TDP-43 and less frequently FUS, or unknown ubiquitinated proteins. Furthermore, new therapeutic approaches continue to emerge, by targeting SOD1, TDP-43 or GRN proteins. This review addresses new advances that are being made in our understanding of the molecular mechanisms of both diseases, which may eventually translate into new treatment options.
منابع مشابه
FTD and ALS: Genetic Ties that Bind
Curiously, amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), seemingly disparate neurodegenerative disorders, can be inherited together. Two groups (DeJesus-Hernandez et al. and Renton et al.) show that the long sought after ALS/FTD mutation on chromosomal region 9p is a hexanucleotide expansion in C90RF72. These studies, plus a study on X-linked ALS/FTD, provide molecular ...
متن کاملThe established and emerging roles of astrocytes and microglia in amyotrophic lateral sclerosis and frontotemporal dementia
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two progressive, fatal neurodegenerative syndromes with considerable clinical, genetic and pathological overlap. Clinical symptoms of FTD can be seen in ALS patients and vice versa. Recent genetic discoveries conclusively link the two diseases, and several common molecular players have been identified (TDP-43, FUS, C9ORF7...
متن کاملA proteomic network approach across the ALS‐FTD disease spectrum resolves clinical phenotypes and genetic vulnerability in human brain
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative diseases with overlap in clinical presentation, neuropathology, and genetic underpinnings. The molecular basis for the overlap of these disorders is not well established. We performed a comparative unbiased mass spectrometry-based proteomic analysis of frontal cortical tissues from postmortem cases clini...
متن کاملUnconventional Translation of C9ORF72 GGGGCC Expansion Generates Insoluble Polypeptides Specific to c9FTD/ALS
Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are devastating neurodegenerative disorders with clinical, genetic, and neuropathological overlap. Hexanucleotide (GGGGCC) repeat expansions in a noncoding region of C9ORF72 are the major genetic cause of FTD and ALS (c9FTD/ALS). The RNA structure of GGGGCC repeats renders these transcripts susceptible to an unconventional me...
متن کاملEvidence of a link between ubiquilin 2 and optineurin in amyotrophic lateral sclerosis.
A mutation in the ubiquilin 2 gene (UBQLN2) was recently identified as a cause of X-linked amyotrophic lateral sclerosis (ALS)/frontotemporal dementia (FTD) and a major component of the inclusion bodies commonly found with a wide variety of ALS. ALS-linked mutations in UBQLN2 are clustered in a unique proline-X-X repeat region, reportedly leading to impairment of the ubiquitin proteasome system...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Arhiv za higijenu rada i toksikologiju
دوره 66 4 شماره
صفحات -
تاریخ انتشار 2015